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Mitochondria are cellular organelles essential for multiple biological processes, including 
energy production, metabolites biosynthesis, cell death, and immunological responses 
among others. Recent advances in the field of immunology research reveal the pivotal 
role of energy metabolism in innate immune cells fate and function. Therefore, the 
maintenance of mitochondrial network integrity and activity is a prerequisite for immune 
system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils 
mitochondrial population eliminating superfluous and/or impaired organelles and medi-
ating cellular survival and viability in response to injury/trauma and infection. Defective 
removal of damaged mitochondria leads to hyperactivation of inflammatory signaling 
pathways and subsequently to chronic systemic inflammation and development of 
inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and 
highlight its critical role in the innate immune system homeostasis.

Keywords: autophagy, energy homeostasis, immunity, inflammation, metabolism, macrophages, mitochondria, 
mitophagy

iNTRODUCTiON

The immune system is an intricate network of distinct cell types, tissues, and organs acting synergisti-
cally to protect the entire organism against the invasion of various pathogens, including bacteria, 
fungi, parasites, and viruses among others. The regulation of immune system is a multistep and 
complex process that classically includes signaling pathways initiated in the surface of immune cells 
and transmitted to the nucleus through a cascade of phosphorylation events. In turn, epigenetic, 
transcriptional, posttranscriptional, translational, and posttranslational modifications take place 
and influence several aspects of innate and adaptive immunity (1, 2). These molecular mechanisms 
are tightly coordinated and define the onset, the duration, and the magnitude of immune responses 
neutralizing foreign pathogenic microorganisms and resolving injury (3–6).

Recent evidence underlines the pivotal role of energy metabolism in the regulation of immunity. 
Mitochondria are dynamic organelles that modify their function, distribution, and structure in 
response to metabolic state of the cell (7). Proper mitochondrial function not only provides the 
required energy but also is essential for the establishment and the maintenance of immune cells 
phenotype and activity (8). Mitochondrial defects, characterized by cytoplasmic calcium elevation, 
increased reactive oxygen species (ROS) levels, and pronounced release of pro-apoptotic factors 
and mitochondrial DNA (mtDNA), are key stimulators of inflammatory response pathways (9). 
Inflammation is a cytoprotective response preserving tissue homeostasis and ensuring viability 
upon infection or injury (10). Innate immune cells, such as neurotrophils and macrophages, detect 
harmful stimuli and initiate the inflammatory signaling pathways. However, persistent and unre-
solved inflammation in metabolic tissues, such as adipose, liver, pancreas, and muscle, leads to the 
development and progression of several inflammatory pathologies, including atherosclerosis, type-2 
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diabetes, metabolic syndrome, and inflammatory bowel disease 
among others (11). The actions of macrophages in these ailments 
are highly appreciated (12). Inflammasomes are innate immune 
system receptors and sensors initiating inflammatory responses 
(13). Excessive mitochondrial dysfunction mediates inflamma-
some overstimulation in response to noxious stimuli, such as 
pathogens and cellular debris. In turn, caspase-1 is activated 
resulting in the generation of pro-inflammatory cytokines and 
promoting inflammatory cell death (14). Accumulating evidence 
interconnects impaired energy metabolism and inflammasome 
hyperstimulation (14–20). Therefore, repairing of mitochondrial 
functional deficiency or removal of damaged organelles might be 
beneficial against the undesired chronic systemic inflammation.

In this review, we focus on the role of mitophagy in innate 
immune system. We first describe the molecular pathways that 
govern mitophagy as well as its complex interplay with microbe 
selective autophagy, known as xenophagy. Furthermore, we discuss 
the essential role of energy metabolism and mitophagy in 
macrophage homeostasis and inflammasome stimulation. Better 
understanding of mitochondrial degradation mechanisms is a 
key requirement for the development of novel therapeutic inter-
ventions to tackle numerous pathologies in humans, inclu ding 
inflammatory diseases.

MOLeCULAR MeCHANiSMS OF 
MiTOCHONDRiAL TURNOveR

Cellular homeostasis is often undermined by misfolded and 
aggregated proteins, damaged organelles, and invading microbes, 
among others. As a consequence, cells have developed sophisti-
cated quality control mechanisms that remove superfluous and/
or damaged cytoplasmic components. Autophagy serves as such 
a clearance mechanism that is highly responsive to the nature 
of the stimulus. Based on the response, three different types 
of autophagy have been described including microautophagy, 
chaperon-mediated autophagy, and macroautophagy (21, 22). 
For the purpose of this review, the prominent type of macro-
autophagy (hereby referred to as autophagy) will be described. 
General autophagy machinery comprises autophagosome forma-
tion and maturation via irreversible steps of double-membrane 
vesicle nucleation and elongation. Mature double-membrane 
autophagosomes followed by induction of autophagic adaptor 
proteins can recognize, sequester, and enclose cellular cargo. 
Ultimately, fusion of the mature autophagosome with the lyso-
some mediates cargo degradation and recycling of intracellular 
material (23).

In the immune system, proper mitochondrial function is 
a prerequisite for inflammatory responses and host defense 
(24). Accumulation of damaged mitochondria results in exces-
sive ROS production, elevated cytoplasmic calcium levels, and 
mtDNA release to the cytosol, which in turn triggers inflam-
masome activation (25–27). Aberrant inflammatory responses 
have been associated with the development of several autoim-
mune diseases. Therefore, targeting damaged mitochondria for 
degradation could be a promising therapeutic strategy against 
progressive inflammatory pathologies. The removal of damaged 

mitochondria required the activation of a selective autophagic 
process, known as mitophagy. Although the crosstalk between 
mitophagy mechanisms and host defense has been established 
only recently, a growing body of evidence supports the impor-
tance of their coordination.

Following, recent evidence regarding the intricate role of mito-
phagy in inflammatory responses will be discussed in detail. The 
involvement of receptors and adaptors molecules is essential 
for mitophagy initiation and progression. Up to date, several 
mitochondrial proteins, located either in the outer (OMM) or the 
inner mitochondrial membrane (IMM), have been characterized 
as mitophagy receptors. Malfunctioning mitochondria are recog-
nized by a microtubule-associated protein light chain 3 (LC3) in 
either ubiquitin-dependent or -independent manner (Figure 1). 
In turn, mitophagy receptors, which harbor an LC3-interacting 
region (LIR) motif, associate directly with LC3 and promote 
autophagosome formation (28).

The PTeN-induced Kinase 1 (PiNK1)/
Parkin Pathway
Mutations in the PINK1 and the E3-ubiquitin ligase (Parkin) 
were primary associated with Parkinson’s disease. Both PINK1 
and Parkin are needed for proper mitochondrial function, 
although their role in mitochondrial turnover was appreciated 
only recently (29). Under physiological conditions, the transport 
of PINK1 preprotein into the IMM is followed by sequential 
proteolytic cleavage by the mitochondrial processing peptidase 
and presenilin-associated rhomboid-like protease (30–32). The 
remaining fragment of 52 kDa, which harbors the kinase domain 
of PINK1, is exposed to the cytosol until its final degradation by 
the proteasome. Under challenged conditions and loss of mito-
chondrial integrity, PINK1 fails to translocate to the IMM, and 
its proteolytic cleavage is blocked. Consequently, active PINK1 
accumulates on the OMM though its interaction with the trans-
locons of the outer mitochondrial membrane complex (TOM 
complex) (33). Then, PINK1 recruits Parkin through a circuit 
of modifications including phosphorylation of both Parkin and 
ubiquitin (34–38). Damaged mitochondria are tagged with active 
Parkin, which, in turn, mediates the polyubiqutination of several 
OMM proteins, including mitofusin 1 and 2 (MFN1/2), voltage-
dependent-anion-selective channel 1, and mitochondrial import 
receptor subunit TOM20 homolog (TOMM20) among others 
(Figure  1) (39). In certain cases, Parkin-mediated polyubiq-
uitination triggers the proteosomal degradation, as it has been 
documented for MFN1 and MFN2 (40, 41). As a consequence, 
mitochondrial fusion is prevented isolating damaged organelles 
form the healthy mitochondrial network. Thus, mitofusins 
degradation generates smaller mitochondria that can easily be 
sequestered by autophagosomal membranes.

The Role of Adaptor Proteins in 
Mitochondrial Selective Autophagy
Following, Parkin-mediated ubiqutination of mitochondrial 
substrates, several adaptors proteins have been described to bind 
ubiquitin chains on the OMM promoting LC3 recruitment (42). 
Similar to the canonical autophagy mechanism, LC3 recognizes 
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FiGURe 1 | Mechanistic insights into mitophagy process. Dysfunctional mitochondria redirect PTEN-induced kinase 1 (PINK1) to the OMM while its proteolytic 
cleavage through mitochondrial processing peptidase (MPP) and presenilin-associated rhomboid-like (PARL) proteases is blocked. Concomitantly, PINK1 recruits 
Parkin through a series of modifications, such as phosphorylation of both Parkin and ubiquitin. In turn, Parkin triggers the polyubiquitination of various OMM proteins 
including voltage-dependent-anion-selective channel 1 (VDAC1) and MFN1/2. Polyubiquitinated proteins are recognized by several adaptor molecules, including p62, 
optineurin (OPTN), and NDP52, promoting their recognition by light chain 3 (LC3) and autophogosomal formation. Receptor-mediated mitophagy relies on various 
OMM proteins such as BNIP3, NIX, and FUN14 domain-containing protein 1 (FUNDC1). In addition, PHB2 and cardiolipin serve as inner mitochondrial membrane 
receptors in response to mitochondrial damage. Subsequently, PHB2 and cardiolipin are exposed to the cytosol mediating LC3 recruitment via their LIR motifs.
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and interacts with the adaptor molecules through LIR motifs 
initiating autophagosomal formation. Numerous autophagy 
adaptors have been identified so far, including p62/sequesto-
some-1 (SQSTM1), optineurin (OPTN), next to BRCA1 gene 
1 (NBR1), nuclear domain 10 protein 52 (NDP52), and TAX1 
binding protein 1 (TAX1BP1) (Figure 1) (43).

While the autophagy adaptor p62/SQSTM1 binds ubiquitin 
chains on depolarized mitochondria and is essential for mito-
chondrial clustering in a Parkin-dependent manner, the exact role 
of p62/SQSTM1 in mitophagy has not been verified yet (44–46). 
Despite the similar kinetics of NDP52, TAX1BP1, and OPTN to 
dysfunctional mitochondria, cells lacking these adaptors fail to 
induce mitophagy (47–49). Particularly, loss of OPTN results in 
most prominent inhibition of mitophagy. Studies in mammalian 
cells demonstrate that PINK1-mediated recruitment of OPTN 
and NDP52 autophagy adaptors albeit Parkin was dispensable 
for mitophagy induction (45). Recent findings suggest that both 
NDP52 and OPTN are phopshorylated by the Tank-binding 
kinase 1 (TBK1) and, thereby, enhancing their binding affinity  
(48, 50–52). Interestingly, TBK1 is activated and phosphorylates 
OPTN in response to mitochondrial damage. Then, OPTN is 
recruited on the OMM-promoting mitochondrial elimination (49).

Receptor-Mediated Mitophagy
Mitophagy receptors are commonly found on the outer and IMM. 
Certain OMM receptors of mitophagy have been identified, 

including BCL2 interacting protein 3 (BNIP3), Nip3-like protein 
X (NIX), and the FUN14 domain-containing protein 1 (FUNDC1) 
among others (43). Surprisingly, cardiolipin and prohibitin 2 
(PHB2), which are located in IMM, have been also shown to serve 
as receptor proteins upon stress conditions (53–55). Mitophagy 
receptors contain LIR motifs that indicate their direct interaction 
with LC3 to promote the engulfment of defective mitochondria 
(Figure 1).

NIX contains a mitochondrial BH3 domain and interacts with 
LC3. NIX has been shown to mediate mitochondrial turnover 
during reticulocytes’ maturation (56). Specifically, NIX-mediated 
mitophagy relies on a specific motif within NIX cytoplasmic 
region, which acts as a signaling amplifier to launch additional 
mitophagic proteins (57). Under low oxygen levels, NIX tran-
scriptional activity is regulated by hypoxia-inducible factor 1 
(HIF1), while posttranslational phosphorylation at Ser81 drives 
mitochondrial clearance in ischemic stroke (58, 59). In addition, 
NIX phosphorylation at Ser34 and Ser35 residues surrounding 
LIR motif increases its binding affinity to LC3 (60). A recent study 
has also documented an alternative role of NIX-mediated mito-
chondrial quality control in human fibroblasts lacking PINK1 
and Parkin (61, 62). This non-canonical regulation of mitophagy 
by NIX can give rise to novel therapeutic approaches for removal 
of malfunctioning mitochondria in Parkinson’s disease.

BNIP3 was also characterized as a BH3 protein on the 
OMM initially involved in cell death process (63). Despite its 
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role in cell death, a potent role of BNIP3 in mitophagy has 
been reported. Specifically, its N-terminal LIR motif serves 
as a signaling platform for LC3-mediated mitochondrial seques-
tration through autophagosomes. Notably, sufficient LC3 
binding is accompanied by BNIP3 phosphorylation at Ser17 
and Ser24, proximal to the LIR motif (64–66). Surprisingly, 
BNIP3-deficient mammalian cells showed induction of PINK1 
proteolysis and subsequently failed to promote mitophagy (67). 
Upon hypoxia, HIF1 triggers BNIP3 expression levels, which, 
in turn, inhibits cleavage of PINK1 proteolysis and promotes 
mitophagy (67). Depletion of DCT-1 the Caenorhabditis elegans 
homolog of both BNIP3 and NIX results in mitophagy inhibi-
tion suggesting a conserved role of autophagy receptors among 
species (68).

In mammalian cells, hypoxia promotes the binding of mito-
phagy receptor FUNDC1 to LC3 (69). Under normal oxygen 
levels, LC3 binding is perturbed due to phosphorylation of 
FUNDC1 at Tyr18 and Ser13 by Src and casein kinase II, respec-
tively (70). In response to hypoxic conditions, phosphoglycerate 
mutase family member 5 phosphatase is activated and dephos-
phorylates FUNDC1 enabling its functional association with LC3 
autophagosomal protein (71). Recently, it has been reported that 
FUNDC1 is a substrate of the serine/threonine-protein kinase 
unc-51-like kinase 1 (ULK1) (72). ULK1 translocates to damaged 
mitochondria and phosphorylates FUNDC1 at Ser17 triggering 
mitophagy in response to stress conditions (72). However, several 
homeostatic mechanisms have been evolved to regulate and fine-
tune mitophagy during hypoxia (23, 73). FUNDC1-mediated 
mitophagy is block due to activation of receptor-interacting 
serine/threonine-protein kinase 3 followed by phosphorylation 
of FUNDC1 upon reperfusion injury (73). These results highlight 
the interplay between mitophagy and necroptosis to maintain 
cellular homeostasis during hypoxic conditions. Furthermore, 
mitochondrial E3-ubiquitin protein ligase 5 ubiquitinates 
FUNDC1 mediating its proteasomal degradation in response to 
hypoxia (23, 74).

Although the aforementioned receptors are located on 
the OMM, the possibility that an IMM protein could serve as 
a mitophagy receptor is not excluded. Toward this direction, 
PHB2 was recently characterized as an IMM mitophagy recep-
tor (55). Particularly, it has been showed that Parkin-dependent 
loss of mitochondrial integrity and permeabilization of the 
OMM enhance the interaction between LC3 and PHB2, thereby 
promoting mitophagy. In addition, PHB2-mediated mitophagy 
is involved in selective clearance of paternal mitochondria in C. 
elegans embryos (55).

Similar to PHB2, cardiolipin belongs to the group of IMM 
mitophagy receptors. Biosynthesis of cardiolipin occurs in the 
IMM, where it is primary located. In response to mitochondrial 
stress, cardiolipin migrates to the OMM setting up a signaling 
platform for mitophagy and apoptosis initiation. Furthermore, 
migration of cardiolipin on the OMM is essential for its direct 
binding of with LC3 and mitophagy stimulation (53). A recent  
study in yeast showed that both the mitogen-activated pro-
tein kinase and the protein kinase C (PKC) are involved in 
cardiolipin-mediated mitophagy. Interestingly, activation of 
PKC was sufficient to reverse mitophagy defects phenotypes in 

cardiolipin-depleted cells (54). Taken together, detail mechanistic 
insights relative to the activation and function of IMM mitophagy 
receptors will provide novel therapeutics targets in numerous 
mitochondrial disorders.

THe iNTeRPLAY BeTweeN MiTOPHAGY 
AND XeNOPHAGY

The bacterial origin of mitochondria is a result of an endosym-
biotic event that happened billions of years ago. Although the evo-
lutionary changes, mitochondria retained several vestiges of their 
prokaryotic ancestors. First, mitochondria are semi-autonomous  
organelles that could expand or shrink their population through 
fission/fusion events independently of cell division (75). Mito-
chondria contain their own circular genome that displays evident 
bacterial characteristics such as decreased methylation events, 
lack of histones, polycistronic, and intron-less genetic loci (76). 
Furthermore, mitochondrial inner membrane is composed of  
cardiolipin, a specific phospholipid that exist uniquely in pro-
karyotic membranes (77). In addition, mitochondrial protein 
translation begins with N-formylmethionine, which is a derivative 
of methionine and a common feature of bacterial and organellar 
protein synthesis (78). Given the ancestral similarities between 
mitochondria and bacteria, it is worthwhile to investigate the 
common molecular mechanisms that regulate mitophagy and 
microbe selective autophagy, known as xenophagy.

The function of innate immunity is driven by the recognition 
of endogenous and exogenous signals by innate immune system 
receptors, such as toll-like receptors (TLRs), formyl peptide 
receptors, nucleotide oligomerization domain-like receptors 
(NLRs), retinoic acid-inducible gene 1 (RIG-1)-like receptors 
(RLRs), C-type lectin receptors (CLRs), and inflammasomes. 
Both pathogen-associated molecular pattern (PAMP) molecules, 
which are microbial derived stimulators (e.g., microbial nucleic 
acids, lipoproteins, and carbohydrates), and damage-associated 
molecular pattern (DAMPs) molecules, which are released by 
the cells of the host in response to injury or necrotic cell death  
(e.g., mtDNA, cardiolipin, ATP, and formyl peptides), are recog-
nized by the immunity receptors mediating, in turn, inflamma-
tory signaling pathways (10, 11).

Similar to mitophagy induction, PAMPs promote the recruit-
ment of autophagic machinery through a series of ubiquitination 
events and the stimulation of several receptor and adaptor mole-
cules in response to pathogen invasion. Following Mycobacterium 
tuberculosis infection in macrophages, bacterial DNA is recognized 
by cGMP-AMP synthase/stimulator of IFN genes mediating type 
1 interferon generation and xenophagy initiation (51). Galectin-8 
is a cytosolic PAMPs receptor that binds Salmonella typhimu-
rium and prevents its proliferation. Interestingly, galectin-8  
recruits NDP52 adaptor protein in a ubiquitin-dependent man-
ner and promotes xenophagy (79). Moreover, several autophagy 
adaptor proteins, including p62, OPTN, and NBR1 with a 
well-established role in mitophagy, bind ubiquitinated bacteria 
and mediate autophagosome formation (Figure  2) (50, 80, 81). 
Thus, ubiquitination events have an important role in the 
recognition and the elimination of pathogenic microorganisms 
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FiGURe 2 | Coordination between mitophagy and xenophagy during infection. Pathogen-derived toxins and secreted proteins impair mitochondrial homeostasis 
leading to mitochondrial DNA and formyl peptides release and excessive generation of mitochondrial ROS. Consequently, pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular patterns (DAMPs) trigger nuclear factor-κB (NF-κB) transcription factor promoting immune responses through NLR 
family, pyrin domain-containing 3 (NLRP3) inflammasome activation and pro-inflammatory cytokines production. In parallel, NF-κB establishes a self-limiting program 
to prevent persistent and uncontrolled inflammation by augmenting mitophagy and pathogen removal via xenophagy. NLRP3 stimulation amplifies mitochondrial 
defects by inhibiting mitophagy through the direct caspase-1-mediated proteolytic cleavage of Parkin. Mitochondrial and bacterial autophagic processes share 
several common regulatory factors, including Parkin, p62/SQST1, optineurin (OPTN), and NBR1 among others, highlighting their tight communication. This intricate 
interplay between energy metabolism and innate immune responses upholds cellular and tissue homeostasis and survival during pathogen invasion.
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bearing a strong resemblance to mitophagy (82). Strikingly, the 
E3-ubiquitin ligase Parkin has been shown to mediate xenophagy 
(83). M. tuberculosis ubiqutination is abolished in murine and 
human Parkin-depleted macrophages resulting in defective 
bacterial elimination (83). Furthermore, Parkin-deficient nema-
todes, flies, and mice are more vulnerable to multiple pathogenic 
bacteria, such as M. tuberculosis, Mycobacterium marinum, 
S. typhimurium, Listeria monocytogenes, and Pseudomonas 
aeruginosa (83, 84). Congruently, several polymorphisms in the 
PARK2 genetic locus are correlated with enhanced susceptibility 
to Mycobacterium leprae and S. typhimurium in humans, high-
lighting the evolutionary conserved function of Parkin in innate 
immunity (85–87).

The question then arises: How does bacterial infection sti-
mulate the E3 ligase activity of Parkin? During mitochondrial 
removal, PINK1 is stabilized on the OMM mediating Parkin 
translocation and activation (74). Recently, PINK1 has emerged 
as a critical regulator of innate immunity, as it has been shown 
that loss of PINK1 enhances inflammation by attenuating the 
levels of pro- and anti-inflammatory cytokines leading subse-
quently to cell death (88). Moreover, PINK1-depleted nema-
todes are sensitive to P. aeruginosa infection (84). However, the 
role of PINK1 in xenophagy needs further to be elucidated. An 
alternative candidate of Parkin activation could be the serine/
threonine kinase TBK1. Interestingly, TBK1 has an essential role 
in mitophagy regulation, as it has been found to phosphorylate 
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several autophagy adaptor proteins including p62, OPTN, and 
NDP52, enhancing cargo recognition and autophagosomal 
engulfment (48, 50–52). Notably, TBK1 is required for efficient 
identification and removal of M. tuberculosis and S. typhimurium 
in mammals (50, 51). Hence, TBK1 kinase could mirror PINK1 
activity during infection; however, further investigation of the 
functional association between TBK1 and Parkin is needed.

MiTOCHONDRiA: A SiGNALiNG HUB OF 
iNNATe iMMUNe SYSTeM STiMULATiON

Considering the structural similarities between mitochondria 
and bacteria, an intricate question follows: Could mitochondria 
be misrecognized by the innate immunity as “invaders” promot-
ing lethal inflammatory responses? Severe physical injury and/
or trauma could lead to tissue disruption and cellular damage 
mediating the release of mitochondrial DAMPs molecules, such 
as formyl peptides and mtDNA, into the host bloodstream (89). 
Then, the immune system is alarmed resulting in the development 
of systemic inflammatory response syndrome (SIRS), which is 
characterized by fever, increased heart rate, low blood pressure, 
shortness of breath, multiple organ failure, and increased lethal-
ity rates. Although, the characteristic features of SIRS resemble 
sepsis, an inflammatory response to severe infection, pathogenic 
microorganisms are need not to be present. Thus, mitochondria 
lie in the heart of innate immunity initiating uncontrolled immune 
response upon noxious stimuli.

Several studies have shown the immunogenic capabilities of 
defective mitochondria (90). Impaired mitochondrial metabo-
lism results in increased mitochondrial ROS (mtROS) levels 
and defective ion homeostasis. Compelling evidence has been 
accumulated suggesting that the cytoplasmic levels of mtDNA 
and mtROS signaling are critical factors in innate immunity 
via inflammasome activation (16–18). The NLR family, pyrin 
domain-containing 3 (NLRP3) inflammasome is one of the 
well-studied inflammasomes protecting the cell against patho-
gens invasion (13). However, dysregulation of NLRP3 activity 
leads to chronic inflammation and the development of several 
pathologies, such as neurodegeneration, metabolic disorders, 
and sepsis (91).

Infections impair mitochondrial homeostasis mediating 
mtDNA release, excessive mtROS production, and subsequently 
inflammasome stimulation (Figure  2). NLRP3 is triggered in 
response to mitochondrial damage promoting caspase-1 activa-
tion. Consequently, caspase-1 generates mature interleukin 
(IL)-1β and IL-18 promoting inflammatory cell death (14, 92). 
To this direction, there is evidence suggesting that LC3B-, ATG5-, 
ATG16L1-, and Beclin1-deficient macrophages display accrual of 
defective mitochondria, increased cytosolic levels of mtDNA, and 
mtROS in response to noxious stimuli, resulting in NLRP3 activa-
tion and IL-1β secretion (15, 17, 18). In addition to mtDNA and 
mtROS, NLRP3 is also activated by cardiolipin. Mitochondrial 
membrane depolarization triggers the translocation of cardi-
olipin from the IMM to OMM promoting its direct association 
with NLRP3 (93). NLRP3–cardiolipin interaction is pivotal for 
inflammasome stimulation indicating that mitochondria act 

as a central signaling platform for innate immune responses. 
Experimental evidence highlights the existence of a positive 
feedback loop between inflammasome and mitochondria, since 
caspase-1 amplifies mitochondrial dysfunction by impairing 
mitochondrial membrane potential, increasing mitochondrial 
membrane permeabilization, and promoting mitochondrial 
network fragmentation to enhance inflammatory responses 
(19). Notably, mitophagy is also inhibited upon inflammasome 
stimulation, since it is reported that Parkin is cleaved by caspase-1 
preventing the degradation of damaged organelles (19, 94). 
Concurrently, accumulation of defective mitochondria results in 
enhanced mtROS production and hyperstimulation of NLRP3 
(Figure 2).

Nuclear factor-κB (NF-κB) is the master coordinator of 
inflammatory signaling acting downstream of immune receptors 
(95, 96). In addition to the production of multiple inflammatory 
chemokines and cytokines, NF-κB also regulates inflammasome 
activation (97). The TLR9 innate immune receptor recognizes 
mtDNA, which is released from necrotic cells, resulting in NF-κB 
nuclearization and the induction of several pro-inflammatory 
cytokines, such as tumor necrosis factor α (TNFα) and IL-6 
(98). A recent study uncovered a self-regulatory and anti-
inflammatory pathway, whereby NF-κB restricts NLRP3 func-
tion through p62-dependent mitophagy (20). NF-κB enhances 
the expression of p62 adaptor molecule mediating the removal 
of damaged mitochondria. Moreover, p62-, Parkin-, and ATG7-
depleted macrophages display pronounced NLRP3 activity, since 
they accumulate defective organelles releasing inflammasome-
activating signals in response to harmful stimuli (20). Therefore, 
NF-κB establishes a self-limiting program to inhibit unresolved 
inflammation, whereby mitophagy has a central role prevent-
ing tissue damage through the maintenance of mitochondrial 
metabolism (Figure 2).

Mitochondrial antiviral signaling protein (MAVS) is an RLR 
immune receptor that is localized on the OMM (99). Elevated 
mtROS levels trigger oligomerization of MAVS, which subse-
quently activate NF-κB to regulate host defense and inflammation 
(100). Interestingly, MAVS recruits NLRP3 on the OMM during 
viral infection (Figure 3). Thereby, inflammasome assembly and 
activity is enhanced due to the close proximity of NLRP3 with the 
sites of mtROS generation (101, 102). MAVS signaling is nega-
tively regulated by ubiquitination events mediated by the ubiq-
uitin E3 ligases SMURF1, Gp78, and Mul1 (103–105). Notably, 
SMURF1, Gp78, and MUL1 are also involved in the regulation 
of mitochondrial removal indicating the immunosuppressive role  
of mitophagy in response to noxious stimuli (Figure 3) (106–108). 
Indeed, a very recent study revealed that anti-inflammatory 
cytokine IL-10 promotes mitophagy to restrain inflammasome 
activity and the uncontrolled inflammatory responses upon 
lipopolysaccharide (LPS) treatment (109).

Altogether, these results demonstrate the pivotal role of mito-
chondria in the innate immune signaling pathways and underline 
mitophagy as a key regulatory mechanism limiting excessive 
inflammation and preserving tissue homeostasis. Although the 
delineation of mitophagy–innate immunity interplay represents a 
milestone in the field of immunometabolism, several mechanistic 
questions still remain elusive, including how mitophagy and 
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inflammasome activity are coordinated in response to infec-
tion, physical injury, and/or trauma and which already known 
mitophagy factors are involved during mitochondrial removal in 
immune cells.

MiTOPHAGY AND MACROPHAGe 
HOMeOSTASiS

Macrophages are indispensable phagocytic cells coordinating 
both pro-inflammatory and anti-inflammatory responses as 
wells as tissue homeostasis and repair during infection (Figure 4) 
(110). Halted macrophages can be stimulated and adapted to 
the host and pathogen nature while their activity undergoes 
dynamic changes (111). Following pathogen invasion and recog-
nition through the innate immune receptors, such as TLRs and 
CLRs, immune cells produce inflammatory cytokines (112–114). 

Particularly, secretion of interferon γ (IFNγ) by helper T cells 1, 
triggers macrophages pro-inflammatory polarization, known as 
classically activated or M1 macrophages (115, 116). Similar to 
IFNγ production, LPS signaling also stimulates M1 macrophages 
through TLRs (117). The tumoricidal and microbicidal properties 
of M1 macrophages are highlighted by their ability to produce and 
release several pro-inflammatory cytokines, such as IL-1β and 
TNFα, and cellular byproducts including ROS and nitric oxide 
(NO) (118–120). On the contrary, polarization of macrophages 
toward an anti-inflammatory phenotype is known as alternatively 
activated or M2 macrophages. In response to specific stimulus, 
a large spectrum of mediators has been reported to activate M2 
macrophages (121). Stimulation of M2 macrophages requires 
in part, secretion of IL-4 and IL-13 cytokines through Th2 cells  
(122, 123). Particularly, IL-4- and IL-13-induced M2 macrophages 
are important for wound healing, while IL-10-induced M2 
macrophages regulating host immunity and tissue homeostasis 
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(124). In addition, the secretion of immune complexes together 
with agonist of TLRs triggers M2 macrophages exerting an 
immuno responsive function (125). Non-activated macrophages 
could be differentiated to M2 phenotype by the transforming 
growth factor-β activity (124, 126). Given the distinct modes 
of action, further classification of M2 macrophages has been 
proposed (57, 115, 127).

Apparently, numerous pathogen-derived molecules and 
biochemical signals orchestrate macrophage activation from 

pro-inflammatory M1 toward to anti-inflammatory M2 
phenotype, including their intermediate responses (110). As a 
consequence of these extreme heterogeneities, M1 and M2 mac-
rophages undergo broad transcriptional and metabolic alterna-
tions, beyond their energy demands (8). Metabolic signature of 
both M1 and M2 macrophages activation imposes a tight coor-
dination between glycolysis, pentose phosphate pathway (PPP), 
fatty acid oxidation (FAO), mitochondrial oxidative phospho-
rylation (OXPHOS), and tricarboxylic cycle (TCA) fluxes (128).  
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It has been shown that M1 macrophages activity is mostly 
affected by glycolysis and PPP while mitochondrial OXPHOS 
and TCA capacities are decreased (129, 130). Specifically, LPS-
activated M1 macrophages promote the release of succinate 
dehydrogenase to the cytosol resulting in the stabilization of 
HIF1, which in turn regulates the expression of several pro-
inflammatory genes such as IL-1β (Figure 4). Absence of HIF1 
or inhibition of glycosis in bone marrow-derived macrophages 
(BMDMs) failed to induce LPS-mediated IL-1β expression (131). 
Metabolic rewiring from OXPHOS toward glycolysis followed 
by IL-1β induction requires the stimulation of pyruvate kinase 
M2 in LPS-activated M1 macrophages (132). On the other hand, 
M2 macrophages activity relies more on FAO, mitochondrial 
OXPHOS, and TCA, but less in glycolysis and PPP fluxes 
(133). Particularly, the stimulation of M2 macrophage requires 
AMP-activated protein kinase activation as well as induction 
of FAO to fuel OXPHOS (Figure 4) (134). Notably, byproducts 
of mitochondrial metabolism, such as mtROS, have also been 
involved in innate immune responses and macrophages activity. 
Production of mtROS has been shown to mediate inflammatory 
cytokine secretion (135). Accordingly, several studies suggest 
that augmented mtROS levels are required for the bactericidal 
activity of macrophages (119, 120).

Only recently, the metabolic signature underpinning mac-
rophage activation has been associated with mitochondrial 
clearance through mitophagy. A latter report suggests that NIX-
mediated mitophagy regulates metabolic shift during macrophage 
differentiation (136). Mitophagy is triggered during M1 mac-
rophage polarization in response to LPS/IFNγ treatment favoring 
metabolic rewiring to glycolysis. Interestingly, NIX-depleted M1 
macrophages present decreased levels of glycolytic enzymes and 
pro-inflammatory cytokines, indicating metabolic defects dur-
ing their differentiation process (136). IFN-stimulated gene 15 
(ISG15) has also been shown to regulate both cellular metabolism 
and mitophagy of BMDMs in response to vaccinia virus infection 
(137). In addition to impaired mitochondrial function, ISG15-
deficient macrophages present reduced Parkin protein levels and 
inhibition of mitophagy upon IFNγ stimulation. Moreover, loss 
of ISG15 leads to defective macrophages polarization and subse-
quently to enhanced virus susceptibility (137).

As reported, IL-10-depleted murine BMDMs favors glucose 
uptake and glycolysis while inhibits OXPHOS in response 
to LPS treatment (109). IL-10-deficient macrophages display 
accumulation of damaged mitochondria due to inhibition of 
mitophagy. Interestingly, IL-10 regulates mitochondrial homeo-
stasis through the inhibition of mTOR signaling (109). A recent 
study in mouse macrophages has also demonstrated that high 
glucose supplementation results in mitophagy defects and pro-
motes M1 macrophages activation (138). Therefore, mitophagy 
regulation is indispensable for the proper determination of M1/
M2 macrophage phenotypes (Figure  4). Recently, the essential 
role of fine-tuned mitochondrial metabolism and mitophagy 
was underlined in a mouse model of sepsis (139). Bone marrow-
derived mesenchymal stem cells (BMSCs) promote survival and 
performance of various organs during septic shock. It is shown 
that the beneficial effects of BMSCs were mediated by mitophagy 
induction in cocultured BMDMs resulting in decreased mtROS 

levels and inflammasome restriction during cecal ligation and 
puncture-induced sepsis (139). Although the beneficial effect of 
mitophagy induction during pronounced inflammatory condi-
tions, mitophagy hyperstimulation could also be detrimental for 
cellular physiology. Runaway mitophagy mediates mitochondrial 
content elimination conferring resistance to apoptosis in alveolar 
macrophages and subsequently leads to the development and 
progression of idiopathic pulmonary fibrosis (IPF) (140).

Taken together, mitochondrial homeostasis and mitophagy 
are crucial for the determination of macrophages functional 
behavior. However, the mechanistic details that orchestrate 
macrophage intracellular metabolism remain still elusive.  
A better understanding of the interconnection between mitophagy 
and macrophages fate and function in response to injury and/
or infection could lead to unpreceded understanding of several 
immune disorders.

MiTOCHONDRiAL FUNCTiON AND 
MiTOPHAGY iN SePTiC SHOCK

Infection triggers the activation of immune system promoting 
the production and release of several cytokines and chemokines 
into the host circulation. In turn, inflammatory responses are 
initiated mediating the signal throughout the body of the organ-
ism to confer protection against pathogens. However, persistent 
systemic inflammatory conditions, such as sepsis, impairs cel-
lular metabolism leading to generalized shock, compromised 
function of multiple organs and eventually to death. Sepsis or 
septicemia is a life-threatening condition and a leading cause of 
morbidity and mortality worldwide (141–143). The pronounced 
mitochondrial defects, which are described in septic conditions, 
and the significant role of mitochondria in innate immune 
signaling indicate their involvement in the development and 
progression of sepsis (144).

Peripheral mononuclear blood cells, isolated form septic 
patients, present hyperactivated mitogen-activated protein 
(MAP) kinase kinase 3 (MKK3) (145). Notably, MKK3 stimulates 
p38 MAP kinase signaling to promote septic shock (146, 147). 
MKK3-depleted macrophages display improved energy metabo-
lism, which is characterized by reduced mtROS production, larger 
and elongated mitochondria, elevated membrane potential and 
ATP generation during LPS challenge (148, 149). These results 
suggest that MKK3 alters mitochondrial function to further 
enhance inflammatory responses. Indeed, MKK3 depletion 
restricts NF-κB nuclearization and inflammasome stimulation 
conferring resistance to septic injury (147, 148). Recently, MKK3 
has revealed as an essential factor of mitochondrial homeostasis, 
since MKK3 deficiency influences the modulation of several 
proteins, including sirtuin 1, PINK1, and Parkin among others, 
to promote both the induction of mitophagy and mitochondrial 
biogenesis (145).

Further supporting the immunosuppressive role of mitophagy  
in sepsis, a recent study showed that senstrin 2 (SESN2) restrains 
NLRP3 activity by promoting the elimination of damaged mito-
chondria in macrophages (150). Interestingly, SESN2 mediates 
the association between p62 and the ubiquitin chains on the 
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OMM, thereby, promoting the perinuclear localization of dys-
functional organelles. In turn, SESN2 initiates autophagosomal 
formation and mitochondrial turnover by increasing the levels of 
the autophagy initiator protein ULK1 (150). It has been reported 
that NO prevents NLRP3 activation and protects against LPS-
induced septic shock (151). Notably, NO, generated by nitric 
oxide synthase 2, upregulates SESN2 protein levels contributing 
to inflammasome suppression during LPS-induced sepsis (150). 
In addition, basal levels of NO could also promote mitochon-
drial translocation of Parkin mediating PINK1-independent 
mitophagy (152). On the other hand, under nitrosative stress 
conditions, the excessive NO generation induces S-nitrosylation 
of PINK1 inhibiting its kinase activity and preventing Parkin 
mitochondrial recruitment (153). Thus, further investigation is 
needed to delineate the role of NO activity in the regulation of 
mitophagy and energy metabolism in immune cells.

CONCLUDiNG ReMARKS

Mitophagy holds an essential role in the regulation of inflam-
matory responses. Several molecular mechanisms are coordi-
nated to mediate mitophagy, preserving cellular and organismal 
survival in response to intracellular and environmental stimuli 
(68). Mitophagy deregulation leads to impaired mitochondrial 
metabolism and eventually to systemic unresolved inflamma-
tion and tissue collapse. While basal changes in mitochondrial 
number and function induce mitophagy, under severe mito-
chondrial damage excessive mitophagy leads to programmed 
cell death (154). Therefore, mitophagy impacts organismal 
health and disease in a context- and dose-dependent fashion 
(66, 140, 155, 156). To this direction, shortage of mitochon-
drial population due to induction or persistent mitophagy has 
also been reported (140, 157, 158). It is becoming evidence 
that mitophagy defects as well as excessive mitophagy events 
represent common features of several pathologies. In particu-
lar, runaway mitophagy lowers mitochondrial population in 
alveolar macrophages conferring resistance to apoptosis, which 
in turn, leads to IPF progression (140). As noted, growth of 
tumor cells upon hypoxia requires stimulation of glycolysis 
and lactate production accompanied by increased mitophagy 
(159, 160). Within this scope, mitochondrial localization of 
valosin-containing protein drives hyperactivation of mitophagy 
and leads to neurodegeneration in Huntington’s disease (161). 
Overall, the degree to which mitophagy contributes to these 
pathologies has not been elucidated yet. Moreover, it remains 
to be clarified whether pharmacological stimulation or inhibi-
tion of mitophagy represents a potent therapeutic strategy for 
several pathologies including immune disorders, cancer, and 
neurodegeneration among others. Although great progress has 
been already made in the field of mitophagy-inducing drugs, 
better understanding of the molecular mechanisms would 
ensure the identification of novel targets for maximum thera-
peutic efficiency.

Several synthetic and/or natural compounds have been 
shown to induce mitophagy maintaining cellular and organismal 
homeostasis (162). p62/SQST1-mediated mitophagy inducer 
(PMI) is a chemical compound that promotes mitochondrial 

removal through nuclear factor E2-related factor 2 (Nrf2) stimu-
lation (163). Nrf2 is the master regulator of cellular homeostasis 
orchestrating the gene expression of multiple cytoprotective 
proteins, including antioxidant, anti-inflammatory, and detoxi-
fication enzymes among others, to enhance survival and viability 
during stress (164). Moreover, Nrf2 activity is pivotal for proper 
mitochondrial function and metabolism, since it regulates the 
expression levels of several mitochondrial related genes (165). 
PMI prevents the proteasomal degradation of Nrf2 by disrupting 
its association with Kelch-like ECH-associated protein 1 (163). 
In turn, Nrf2 is stabilized and enhances p62/SQST1 expression 
promoting PINK1/Parkin-independent mitophagy upon PMI 
supplementation (163). Notably, deregulation of Nrf2 function 
results in the development of autoimmune diseases and increased 
susceptibility to pathogens, since Nrf2 is implicated in several 
innate immune responses (166–169). Therefore, PMI administra-
tion could be beneficial against the aforementioned pathological 
conditions.

Natural occurring compounds able to induce mitochondrial 
turnover have attracted much attention in recent years. As such, 
spermidine and urolithin A have been shown to induce mitochon-
drial elimination promoting longevity and stress resistance in 
many organisms, including mice, flies, and nematodes (170–172).  
In addition to mitophagy, both spermidine and urolithin A 
present anti-inflammatory properties modulating mitochondrial 
meta bolism and subsequently NF-κB activity (173–178).

The balanced interplay between the inflammatory and 
the immunosuppressive signaling pathways highlights that 
sustaining mitochondrial network integrity and energy 
metabolism safeguard tissue and organismal homeostasis in 
response to constant exposure to immunogenic signals. Hence, 
examination of already FDA-approved drugs and several 
pharmacological screenings are taking place to characterize 
novel molecules that can be used to enhance immune system 
homeostasis through the regulation of mitophagy. Although, 
experimental evidence underlines the cytoprotective effects 
of mitophagy modulators on animal disease models, the 
therapeutic potential and the levels of cytotoxicity on humans 
remain to be determined. Thus, interventional clinical studies 
need to be organized to monitor and validate the therapeutic 
capacity of mitophagy-inducing agents against immune system 
diseases.
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